ATM serine/threonine kinase

< ATM serine

ATM
Identifiers
AliasesATM, ATM serine/threonine kinase, AT1, ATA, ATC, ATD, ATDC, ATE, TEL1, TELO1, ataxia-telangiectasia mutated
External IDsOMIM: 607585; MGI: 107202; HomoloGene: 30952; GeneCards: ATM; OMA:ATM - orthologs
Orthologs
SpeciesHumanMouse
Entrez

472

11920

Ensembl

ENSG00000149311

ENSMUSG00000034218

UniProt

Q13315

Q62388

RefSeq (mRNA)

NM_007499

RefSeq (protein)

NP_000042
NP_001338763
NP_001338764
NP_001338765
NP_000042.3

NP_031525

Location (UCSC)Chr 11: 108.22 – 108.37 MbChr 9: 53.35 – 53.45 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks (canonical pathway), oxidative stress, topoisomerase cleavage complexes, splicing intermediates, R-loops and in some cases by single-strand DNA breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

In 1995, the gene was discovered by Yosef Shiloh who named its product ATM since he found that its mutations are responsible for the disorder ataxia–telangiectasia. In 1998, the Shiloh and Kastan laboratories independently showed that ATM is a protein kinase whose activity is enhanced by DNA damage.

Throughout the cell cycle DNA is monitored for damage. Damages result from errors during replication, by-products of metabolism, general toxic drugs or ionizing radiation. The cell cycle has different DNA damage checkpoints, which inhibit the next or maintain the current cell cycle step. There are two main checkpoints, the G1/S and the G2/M, during the cell cycle, which preserve correct progression. ATM plays a role in cell cycle delay after DNA damage, especially after double-strand breaks (DSBs). ATM is recruited to sites of double strand breaks by DSB sensor proteins, such as the MRN complex. After being recruited, it phosphorylates NBS1, along other DSB repair proteins. These modified mediator proteins then amplify the DNA damage signal, and transduce the signals to downstream effectors such as CHK2 and p53.